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I INTRODUCTION
1.1 Background

Newton observed that the atmosphere distorted the images he
observed while viewing through a te]escopel. Currently new systems,
called adaptive optical systems, are under development to reduce
the degrading effects noted by Newtonz. A typical imaging adaptive
optical system is shown in figure 1-1. The wavefront sensor measures
the aberrations induced by the atmosphere and controls the wavefront
corrector in a manner to reduce these aberrations. Adaptive optical
systems are also under development for laser communications systems
which transmit through the atmosphere. One particular system of
interest is a ground-to-near space optical communications link.
Adaptive optics is required in such a system to maintain the gain
of the transmitting aperture to near its diffraction Timited value.

A typical transmitting adaptive optical system is shown in figure 1-2.
The wavefront sensor measures the aberrations of an optical beacon
signal originating at the spaceborne receiver. The wavefront
corrector is adjusted to cancel these aberrations. These corrections
are then imposed on the transmitted laser wavefront before it is
propagated to the receiver. By reciprocity the transmitted ngnal

arrives at the receiver with nearly diffraction limited parameters3.
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1.2 Prnblem Statement

A fundamental problem of both imaging and transmitting
adaptive optical systems is that the degradation imposed by the
atmosphere is a function of the propagation path. This concept is
demonstrated in figure 1-3 in a highly exaggerated scale. The
aberrations on paths 1, 2, and 3 would be nearly identical
(150p1anatic)4, whereas the aberrations on paths 4 and 5 would
be different (anisoplanatic). If an imaging system views an object
which is large enough so that wavefronts from different portions
of the object suffer different aberrations, system performance will
be reduced. For a communications system transmitting to a moving
receiver, time delays can cause the reference and transmitted beams

to travel different paths and thus undergo different aberrations,

once again reducing system performance.
1.3 Research Objective
The objective of this paper is to use estimation theory to

reduce the degrading effects created by anisoplanatism in laser i

communications systems. As will be shown in the following, the

application of estimation theory to this problem requires the
development of new estimation procedures, since the random processes

involved are not well behaved.

In the next chapter we develop the required mathematical concepts

and formalize the problem statement.
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IT STRUCTURE FUNCTIONS AND THE ANISOPLANATIC PROBLEM
2.1 Description of Random Processes

In the study of real physical systems the analyses can
usually be greatly simplified if the processes which describe the
system can assumed to be stationary in the wide sense (i.e., second
order statistics are not a function of absolute time). However,
for many physical systems of interest the assumption of wide sense
stationarity cannot be used since parameters of these systems have
mean values which tend to be a function of absolute time.
Meteorological processes such as wind speed, temperature, and
pressure are examples of processes which tend to have mean values
which are a function of absolute time. Since such processes are
non-stationary, they are nonergodic. Therefore, time averages cannot
be used in place of ensemble averages. However, since time averages
are all that are available, attempts are made to use the time averages
as ensemble averages to implement the powerful statistical analysis
procedures which have been developed qver the last several hundred
years. When attempting to use the time averages, it is difficult
to assess which fluctuations are associated with first order
statistics and which are associated with higher order statistics.
For example, meteorological parameters such as wind speed, temperature,
and pressure at a given location have variations with periods of less

than 0.01 seconds and greater than days, years, and probably much

. . \)
ticimelissumencindlts 00 kit NS et Amst aomi 8




longer. Thus when using the time averages of these processes it is
difficult to determine the correlation function. Large variances
can result when time averages are used to approximate ensemble
averages for such processes. These large variances can lead to

mathematical problems when analyzing such processes.

To avoid these types of problems a statistical description,
called the structure function, related to the difference between the
value of the process at two different times, has been developed.

The differencing process tends to suppress slow fluctuations

(i.e., those which have a period longer than the differencing time)
and to suppress problems associated with large variances. Time
averages of the difference function are thus more representative of

ensemble averages than are time averages of the basic process.

In this paper we will extend the use of the structure function
to develop an optimum linear estimate of the future value of
non-stationary random processes. This estimation procedure will then

be applied to the problem of interest.
2.2 Ristorical Note

The concept of structure functions was first introduced by
Kolmogorovs. In his work Kolmogorov used the structure function to
describe the random nature of meteorological parameters. Since its
introduction the structure function has been widely used in the

literature to describe optical propagation through turbu\ences.




Fried introduced the hyperstructure function, which is similar
to the structure function, and is useful for describing processes

which are a function of more than one variab1e7.
2.3 Structure Function Formulation
The temporal structure function of the random process
f(t), denoted as Df(t1,t2), is defined as follows:
0.(t,,t,) & <[f(t,) - f(t )]2> (2.1)
fl 1272 1 2 :
where the < > brackets indicate an ensemble average.
If f(t) is non-stationary, due to non-stationarity of the

mean, the structure function can be expressed in terms of

(t1-t2) as long as the difference function, h, defined as:
is stationary in the mean.
We can simply show that h will be stationary in the mean

provided that the mean value of the process f(t) is a linear

function of t.

Let: <f(t)> =m + at (2.3)
Then: <h(t,,t2)> =m +at, - (m + atz) (2.4)
= a(ty-t,) (2.5)

——




While the assumption that the mean value of a process is linear
might not be completely accurate, it can be applied when the
assumption of stationarity clearly cannot be used. Both theoretical
and empirical data demonstrate that, for the processes that will be
of interest in this paper, assuming that the structure function is
not a function of absolute time is better than assuming that the

process is stationarys.

We note that Df can be written as:

where: Cf(t],tz) is the correlation function of the process f.

For processes with large variances direct measurement of the
structure function avoids the procedure of differencing large

quantities, which can lead to mathematical difficulties.

The spatial structure function formulation follows in a straight
forward manner from the temporal structure function. The spatial
structure function of the process f(X), denoted as Df(;]’}z)’ is

defined as:

Dp(%y.%,) = <[£(%)) - (X )15 (2.7)

The structure function depends only on the distance between
;1 and §2 (i.e. 1;1 - izl) if the difference function h(?l,iz)
is homogenous and isotropic. As will be shown later, this assumption

is realistic for the processes of interest in this paper.




—

The hyperstructure function, F, of the random process
f(¥,8), where ¥ and B are two arbitrary variables (e.g., time,

1inear dimension, angle) is defined as:
FelTya¥pebyoby) & <[F(7y.8)) - £(,.5))
x [f(v;.8,) - £(¥,, B,))> (2.8)
Note that for the case where E] = §2 the hyperstructure
function reduces to the structure function. The purpose of the
differencing procedure in equation (2.8) is to reduce the dependence

of F on the absolute value of the variables ? and 3. Thus, at

least over a certain range of ?1-¢2 and §1-§2 F can be written as:
> > <> > >
Ff(Y]-YZ’gl-gZ) = <[f(Y'| 33]) - f(YZ,g])]
x [£(31.8,) - £(¥,.5,)1> (2.9)
In the following sections a particular problem which can be
solved using the structure function and the hyperstructure function
approach will be described.

2.4 Turbulence Induced Phase Noise

As stated in the introduction, the problem of interest is a

ground-to-near space visible wavelength optical communications system.

10




The electric field of the signal, in the transmitting aperture

plane, can be written as the real part of:

s(t7,7) = W (A, (t° Plexptilwt” + ¢ (t.3)

+o ()] (2.10)

where: t- is time in the transmitting aperture;
y is a vector denoting position in the transmitting
aperture plane;
-

wa(y) is a function which defines the transmitting

aperture;
1 inside the aperture
NG . (2.1)

0 outside the aperture

Am(t‘,}) is the amplitude modulation applied to the
signal.
w is the temporal frequency of the electromagnetic
field.
¢m(t‘,§) is the phase modulation applied to the signal;
and
¢a(t‘,§) is the phase imposed on the field by the

transmitting antenna.
For our problem of interest the amplitude modulation and the

phase modulation will be applied uniformly across the entire

transmitted field, thus Am and O will have no ; dependence.

1




For conventional non-adaptive systems %a has no time dependence.

Equation (2.10) can thus be simplified to:
s(t2.3) = W (7IA, (t-)explifog (t°) + o, (¥)]} (2.12)

where the wt dependence is understood.

After the signal propagates through the cloud free atmosphere

the received field, r, can be written as:

F(£,%) = Wy (OA (£)A (Kexplilo (K) + o (£)

where:

+op(t,X) + v(£,X)]} (2.13)
t is time in the receiving aperture;

X is a vector denoting positian within the receiving

aperture;
wb(;) tefines the size of the receiving aperture;

¢b(t,§) is the phase imposed on the field by the

receiving antenna;

Ap(i) and ¢p(§) are the amplitude and phase effects,
respectively, which would result if the propagation
from the transmitting plane to the receiving plane

were in free space; and

y(t,?) is a complex random process which denotes the
degradation imposed on the signal as a result of the

field propagating through the turbulent atmosphere.

12
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The terms Ap(?) and ¢p(§) are well understood. They can be

calculated using the Huygens-Fresnel integral4 as follows:

w

u(t,X) =f(jxr)'1 (expjkr) (cosB) s(t,y)dy;

where: U(t,X) = Am(t)Ap(;)exp.jbp(;) + oq(t)]s

*> ., > - . >
r is the vector from y to x and r is |v];

t g is the angle between W, the normal to the y

plane, and ?; and

k is the wave number = 27n/X.

We can separate both ¢p(§) and.Ap(i) into two parts as

shown below:

¢ (X)

) 1
b oy * ¢p(i’)

- 1.
Ap(x) A, + Apu?)

where: ¢p and Ap are constants.

For most applications the size of the receiving aperture,
defined by wb(i), is chosen so that ¢;(?) and A;(i) do not have
significant variations over the receiving aperture. Thus we can

rewrite equation (2.13) as follows:

r(t,%) = W GOA(expiile, + o, (t) + oy (%)
+ Y(ts;)]}

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)




where: A(t) = Am(t)Ap ‘ (2.19)

We can write y(t,Xx) as follows:
y(t.X) = ¢ (t.%) + jB(t.X) (2.20)

where both ¢y and B are Gaussian random processes. Both 0

and B are noise-like terms which are the result of the field
propagating through the turbulent atmosphere where the index

of refraction, n, has a spatial dependence. It is well known
that the temperature fluctuations of air are the main contributor

to fluctuations in the refractive index at optical frequenciesg.

Using equation (2.20) in equation (2.18) gives:

r(t,%) = Wy (OA (£.3A(t)explils, + o, (t)

+op(t.X) + o7 (£,X)]} (2.21)

where: An(t,I) = exp(-B(t,x)]. (2.22)

From equation (2.21) we see that the turbulent propagation
medium has induced both phase and amplitude noise on the received
field. For most laser communication systems the amplitude noise
does not significantly reduce system performance. The phase noise,
however, does seriously degrade system performance. Fried has shown
that the additive phase noise can be analyzed as limiting the
effective transmitter aperture sizeg. The effective limit is the
coherence length of the phase aberrations in the received field.

This phase coherence length is denoted as or The resolution

14
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achievable when imaging through the atmosphere is also limited to

that corresponding to an aperture diameter of approximately rolo.

Measurements indicate that typical nighttime values of r
11

0o

are approximately 10 cm Using the standard definition of

theoretical (i.e., diffraction limited) antenna power gain]z,

GDL’ we calculate:
G = (nD/2)2 (2.23)
DL .

as the gain of an aperture of diameter D at wavelength i.
If the effective aperture is limited to "o then the effective

gain, Ge’ is: ]
6. = (rr )2 (2.24)
e 0 :
The loss due to turbulence is thus:

-2
Loss in gain = (ro/D) (2.25)

-y

For a 2 meter aperture and an re = .1 m the loss is:

400 (2.26)

Loss in gain

26 dB (2.27)

To recover such losses adaptive optical systems have been proposed.

2.5 Adaptive Optical Compensation

Adaptive optical systems adjust ¢b(t,§) to cancel the additive

phase noise, ¢n(t,§). The required correction is determined by

measuring the phase difference between points in the receiving plane

rather than the absolute phase. Using equation (2.21) the phase




difference between two points in the receiving plane is:
-+ -+ + >
¢(tox]) - ¢(t9x2) = ¢b(t9x1) = ¢b(t’x2)
+ [o,(t%)) = ¢, (t,%,)] (2.28)

Both the absolute phases, ¢p’ and the phase modulation, ¢y are
suppressed by the differéncing operation. Since ¢p is not an
aberration, but is merely due to a time delay and since m is a

desired signal which we don't wish to modify, setting: 4
¢b(;]) = ¢b(-;2) = ‘[‘bn(ts;]) - ¢n(ts-§2)] (2-29)

will provide the desired compensation.

For a receiving adaptive optical system, as shown in figure 1-1,
the phase noise on the incoming field is measured and the negative
of the phase noise is added to the field before signal detection.
For transmitting adaptive optical systems, as shown in figure 1-2, the
phase noise on the field of a reference beam propagating from the
receiver to the transmitter is measured. The negative of the
measured phase noise is added to the outgoing field. Assuming that

the reference and the transmitted beams propagate through the same

turbulence, then by reciprocity the transmitted beam will arrive at

the receiver without any phase noise.

Transmitting adaptive optical systems are appropriate for a
ground-to-space communication 1ink where the complexity of such
systems is acceptable at the ground transmitter, but would not be

in the satellite receiver.

16




2.6 The Anisoplanatic Problem

For a ground-to-space communication link in which the reference

beacon and the receiver are co-located the two way propagation time

between the receiver and transmitter causes the path followed by the
reference beam to differ from that of the transmitted beam as shown
in figure 2-1. The point ahead angle, ¢, between the propagation

paths of the reference beam and the transmitted beam is:

8 = 2V/c (2.30)

where: V is the linear velocity of the satellite perpendicular

to the line of sight; and ¢ is the speed of light.

Since, as discussed in the introduction, the phase distortion

imposed by the atmosphere is a function of the propagation path,

the phase noise imposed on the reference beam will be different than ‘
the phase noise imposed on the outgoing transmitted beam. Thus if ]
the phase noise on the reference beam is used to determine the phase
compensation for the transmitted beam, an error is made. Such errors

are called anisoplanatic errors.

There are several sources of error in adaptive optical systems
such as spatial sampling errors in the wavefront sensor and the
wavefront corrector, photon error in measuring the aberrated wavefront,
time delay errors, amplitude scintillation errors, and anisoplanatic

errors]3. New methods of implementing the adaptive optics correction]4,

currently in the basic research stage, theoretically can reduce all of

17
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these errors to zero, for a system with a bright reference signal,
except for the error created by anisoplanatism. Thus anisoplanatic
errors currently place a fundamental limit, which {s known to be
severe, on the performance of the type of adaptive optical

communications systems shown in figure 2-1.

To overcome the anisoplanatic errors, systems have been proposed
which use a beacon in front of the receiver as shown in figure 2-2.
If the angle between the beacon and the receiver, as viewed from the
ground, can be kept at the point ahead angle then the anisoplanatic
error can be reduced to zero. In practice, however, it is impossible
to keep the beacon to receiver spacing correct at all times. This is
especially true for the near earth.orbiting satellites of interest
since the orbital parameters are constantly changing due to atmospheric
drag. The station keeping requirements (i.e., the allowable deviation
in the distance between the receiver and the beacon from its correct
value) are established during system design by specifying the maximum
allowable anisoplanatic error. As shown later these station keeping
requirements are extremely stringent. These severe station keeping
requirements greatly increase the cost and complexity of the beacon
and bring into question the feasibility of using a system as shown

in figure 2-2.

The purpose of this paper is to investigate methods for relaxing
these station keeping requirements by estimating the aberrations on
one path from observing the aberrations on other paths. Thus the

mathematical problem of interest is to estimate the value of a

19
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non-stationary random process (i.e., the phase difference between

two points in the aperture plane) at an unobserved point (i.e., the
point ahead angle) from observed data (f.e., phase difference data

at observed zenith angles). While solutions to the prediction

problem are well known for stationary processes for which the
correlation function is known, they must be modified for non-stationary
processes. We will use the structure function and the hyperstructure

function to develop an optimum linear estimate for non-stationary

random processes for which the correlation function is unknown.
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I11 SOLUTION OF THE PREDICTION PROBLEM USING THE HYPERSTRUCTURE FUNCTION
3.1 Standard Estimation Procedures

It is well known that the future value of certain random processes
can be predicted exactly, in the mean square error sensels. The optimum
mean square error estimate ot f(t+at), denoted as %(t+At), of the
random process f(t) is found as follows:

fleaat) =D0f " () (at)" I/n (3.1)

n=o

where £ " (t) is the nth derivative of f with respect to t.

However, the estimation procedure provided by equation 3.1 requires
that the process be stationary. We desire an estimation procedure for
non-stationary processes. In practice application of equation (3.1)
is difficult, even when the process is stationary, since small amounts

of noise can significantly alter the higher derivatives.

The Wiener-Hopf approach to solving the prediction problem is

developed as fo110ws]6. Let f(t+st) be the estimate of f(t+at). The '

estimate is given by: ,
" t

Ft+at) ='/f(8) h(t,s) ds (3.2) |

- ad i

where: f(B) is the observed data; and

h(t,8) is the impulse response of the optimum linear filter.
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The orthogonality principle]s requires that the error in the estimate

be orthogonal to the observed data, i.e.,: J
i

<[F(t+at)-F(t+at)] £(8)> = 0 (3.3)

for all g<t since f(g) is the observed data. Using equation (3.2)

in equation (3.3) gives:

<[f(t+at) - [ F(8) h(t,8)dB] f(e)> = 0 e<t (3.4)

Taking the expectation gives:

t
C(teat,e) -fo(B,e) h(t,8) d8 = 0 e<t (3.5)
At this point in the deve]opment it is usually assumed that the
process is stationary. We digress to discuss the solution in that case.

If the process is stationary then equation (3.5)can be written as:

t
Colt+ate) -fo(B-e) h(t-g) dg8 = 0 e<t (3.6)

Using the following change of variables:
a=t-8 (3.7)
in equation (3.6) gives:

Cptsatee) ;fo(t-a-e) h(a) da = 0 e<t  (3.8)

23




Using another change of variables:

t-e=c1 (3.9)
in equation (3.8) gives:

Cf(ﬂ-At) -oj:(:f(r-a) h(a) da = 0 (3.10)

which is true for all t>0. This is the standard form of the
Wiener-Hopf integral equation. Procedures have been developed for

solving this equation]ﬁ.

From a practical point of view the Wiener-Hopf approach has two
drawbacks. First it requires complete knowledge of the correlation
function Cf(t],tz) for all times t] and tz. Complete specification
of Cf is not available for many practical problems. Secondly, standard
solutions are known only for the case where the process is stationary.
Trying to apply known procedures for'solving equation (3.10) to solve
equation (3.5) would be tedious. Such a solution would obviously

require that the impulse response, h, be time varying.

To aveid the requirement of knowing Cf(t],tz) for all times
t],t2 we can use an estimation procedure based on discrete time
samples of the observed data. The standard approach for the optimum
estimate in this case is developed as follows. We assume that we have

the observed data set {fi} where:

fi = f(ti) (3.11)

24
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We represent the observed data as a vector ? where:
5. ]
f

fa

¥-]. (3.12)

.
We wish to form an estimate of f(t+at) which we denote as

%(t+At). The optimum linear estimate is given by:
f(t+at)=a-¥ (3.13)

where: the vector multiplication is the standard inner product;
the vector a is chosen such that the orthogonality principle

is satisfied, i.e.,:
<[f(t+at) - F(t+at)] F> =D (3.14)
Using equation (3.13) in equation (3.14) gives:
<[f(t+at) - 3-F ] F>=0 (3.15)

Carrying out the multiplications and the expectation gives the matrix

equation.
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Solution of this equation determines the vector 2 which wil) provide

If the process is stationary equation

the optimum linear estimate.

(3.16) can be written as follows
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Both equations (3.16) and (3.17) require knowledge of the correlation
function. We also note that equations (3.16) and (3.17) involve the
difference of the variance and the correlation function of the process
for various times. Thus for processes with large variances,

equations (3.16) and (3.17) pose a mathematical stability problem,
since they involve the difference of large quantities in an attempt

to observe small quantities.

3.2 Qptimum Linear Estimate for the Future Value of the Difference

Between Two Random Variables of a Process

For many practical cases of interest the value of a process at
some absolute time is not what is required. Many times the problem
can instead be formulated such that it is the difference between the
value of the random process at two different times that is of interest.
Formulation of the problem in such a manner allows use of the
hyperstructure function and the structure function, functions which
can be observed, to describe the process. We now develop the optimum
Tinear estimate for the future value of the difference between two

random variables of the same process.

We desire an estimate, ﬂ(t+At), of h(t+at) where:

h(t+at) = f(t) - f(t+at) (3.18)

For many processes the differencing procedure in equation (3.18)

will remove the non-stationary aspects of the process f(t), at least

for a certain range of At. For processes for which this is true,
such as meteorological processess, we can use time averages to

approximate ensemble averages. 28
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Obviously one approach to forming the desired estimate would be
to measure f(t) and to form an estimate of f(t+At) separately using
the procedures discussed in section 3.1. We develop another approach
which does not require the assumption of stationarity ‘or knowledge

of the correlation function of the process.
We will use the observed data set {h;} where:

hi(at) = f(t,)- f(t;+at) (3.19)

We define the temporal hyperstructure function for a process, which

is a function of a single variable, as follows:
4
Ff(ti—tj ,At) = <[h‘.(At)][hj(At)]> (3.20)

We note that for ti = tj the temporal hyperstructure function reduces
to the temporal structure function. We form a linear estimate of

h(t+at) as follows:

h(t+at) = 3-R (3.21)
and optimize the estimate by requiring that:

<[h(t+at) -3-R JRh> =D (3.22)

Multiplying and taking the expectation gives:
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Comparing equations (3.23) and (3.17) we see that they are
identical except that in equation (3.23) the hyperstructure function,
F, and the structure function, D, have replaced the correlation
function, C. It is important to emphasize that F and D can be
determined through time domain averages since the differencing

procedure creates a process which is stationary, at least for some

values of at. Thus equation (3.23) can be solved since the
Ff(ti-tj,At) and Df(At) can be determined, whereas neither equation
(3.16) nor equation (3.17) can be solved since the Cf's cannot be
determined through time domain averages]7. Also the problems
associated with large variances have been suppressed through the
use of the hyperstructure function since equation (3.23) involves
the difference of small quantitieé while attempting to observe

small quantities.

3.3 Optimum Linear Estimate for the Difference Between Two Random

Variables of a Process Which is a Function of Two Variables

The development in this section follows that in the previous
section very closely. Here the problem of interest is to predict the
future value of the difference between two random variables of a process

which is a function of both space and time.

We desire to form an estimate, §(p,t+At), of g(p,t+at) where: %

glo,t) = [£(X},t) - f(X,,t)] (3.24)

- o4
and p =[x = x| (3.25)
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We note that implicit in the definition of equation (3.24) is the

wsre

assumption that the differencing procedure has removed any
non-homogeneous and non-isotropic characteristics of the process f(t),

thus making g a function of p and t only.

Obviously one approach to forming the desired estimate would be !
to form an estimate of f(?l,t+At) and f(;z.t+At) separately using the |
procedures discussed in section 3.1. As before, we develop another
approach which does not require the assumption of stationarity or

knowledge of the correlation function of the process.

{ We will use the observed data set {gi(p)} where:

gi(P) 4 g(o»ti) (3.26)

Using equation (2.9) we note that:

<91-(D)Qj(p)> = Ff(psti"tj) (3~27)
Implicit in equation (3.27) is the assumption that the differencing
procedure has removed any non-stationary characteristics of f.

We form a linear estimate of g(p,t+at) as follows:

-~ > >

glo,t+at) = a-g (3.28)
and optimize the estimate by requiring that:

<[g(p,t+st) - 3-3Jg> =10 (3.29)

Multiplying and taking the expectation gives:
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Comparing equations (3.30) and 3.17) we see that they are
identical except that in equaéion (3.30) the hyperstructure function,
F, and the structure function, D, have replaced the correlation
function, C. It is important to emphasize that F and D can be
determined through time domain averages since the differencing
procedure creates a process which is stationary, at least for some
values of p and at. Thus equation (3.30) can be solved since the
Ff(p,ti-tj) can be determined, whereas neither equation (3.16) nor
equation (3.17) can be solved since the Cf's cannot be determined

through time domain averages. Once again we note that the problems

associated with having a process with large variances are suppressed

in equation (3.3).
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IV APPLICATION OF THE OPTIMUM LINEAR ESTIMATE
TO THE ANISOPLANATIC PROBLEM

4.1 Optical Propagation Through Turbulence

A great deal of research has been conducted in the area of
optical propagation through the turbulent atmosphere. Numerous
books and articles have resulted from this research, such as the
pioneering work by Tatarski6 and the more recent work by Str‘ohbehn]7

To make this paper relatively self-contained, we review the results

of others which will be used later in the paper.

The spatial structure function for the index of refraction,

Dn, is given by:

D, (% +%y) = <[n(X}) - n(%,)1% (4.1)
where: n(X) is the index of refraction at X, and;

n(x) = Ve(x) where e(X) is the dielectric constant at Xx.

It is known6 that under certain conditions Dn can be written as follows:

C2 2/3

D (o) =C v (4.2)

where: an is called the index of refraction structure parameter, and;

>

Xy - 12, and; (4.3)
o] (4.4)

<>
P

[o]
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an thus provides a measure of the strength of turbulence. The range
over which equation (4.2) holds is called the inertial sub-range

and is given by:
10 << p << Ly (4.5)

where 10 is called the inner scale of turbulence and L, is called the
outer scale of turbulence. Physically 10 and Lo correspond to the
smallest and largest size elements, respectively, in the turbulent
field over which the index of refraction is constant. Turbulence

which is specified by equation (4.2) is called Kolmogorov turbulence.

Starting wit = the assumption of Kolmogorov turbulence, the
spatial structure function of phase, D¢(p), for a plane wavefront

propagating through a turbulent medium is given by6:
L

2 5/3 2
D, (o) = 2.91 K%, 13 [ 2(v)av (4.6)
0
where: k = 2n/2, (4.7)
A is the wavelength of the optical field,

L is the path length,

v is the distance along the path from the receiver to the

transmitter, and

(0.033) '73) (2) (6/5) [r(1/G)Ir(11/)1"" =2.91 (4.8)

18.

and r(y) is the well known Gamma function




Equation (4.6) can be written as:

0,(p) = A p */3 (4.9)
L
where: A = 2.91 k2 fcﬁ(v)dv (4.10)
0
Fried]0 has defined a parameter ro a8 follows:
ro & (20(28/5)r(675)1%/ 6/m13/5 (4.1)

= (6.88/A)3/5 (4.12)

The physical significance of ro as defined by equation (4.11) is that
ro can be considered to be the diffraction limit of the turbulent medium
through which the optical wave is propagating. Using equatfon (4.12)

in equation (4.9) gives:

D, (o) = 6.88 (o/r,)/3 rad? (8.13)

We can find o from the parameters of the path by using equation (4.11)

in equation (4.10) to get:
L
2 -
ry = [0.423 K% fcdvia™/° (8.14)
o]

We note that the integral in equation (4.14) is unweighted, therefore,
o for a plane wave is not a function of where the turbulence is along

the propagation path. Thus, r_, is the same for both ground to space

o’
and space to ground plane wave propagation.
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Finally, we note that Cﬁ is most often known as a function of

altitude, h, above ground. We thus rewrite equation (4.14) for

ground to space plane wave propagation as:

-
]

= [0.423 k% (sec y) fcﬁ(h)dh]"’5 (4.15)
(o]
where: ¢ = zenith angle;

= h/cosy, and; (4.16)

<

the upper limit of integration is determined by the altitude

2

n goes to zero),

where atmospheric turbulence ends (i.e., C

which is approximately 20km]9.

If o is known, we can use equation (4.13) to determine the mean
square phase difference between points in the apertures plane, for a

given zenith angle.

4.2 Derivation of the Spatial-Angular Structure Function

Others have previously calculated the anisoplanatic errorzo' 2].

We follow a slightly different development which concisely states the

anisoplanatic error in terms of a single structure function.

We define the spatial-angular structure function, denoted as

H¢(3,3), as follows:
H¢(3,3) = <{[¢(§],¢]) - ¢(§2,$])]

- [o(%,40,) - #(%, )15 (4.17)

where: o = $1-$2 (4.18)
38
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H¢(3.3) is the mean square phase difference between two points in

the aperture plane at two different zenith angles. Thus, H¢(3,3)
quantifies the anisoplanatic error. Figures 4-la, b, and ¢ illustrate
the nomenclature used in equation (4.17). As shown in figures 4-1b

will in

and c, the phase difference between points i], and §2

general be different for different zenith angles due to atmospheric

distortion. This is what creates the anisoplanatic error.

Expanding the square in equation (4.17) gives:

2
H‘»(g;e)) = <[¢(_§] ;‘E]) - ¢(;2n—‘5] )]

+

> > > > 2
[o(xy.95) - 0(x5,0,01%> (4.19)
Using equation (2.9) we can rewrite equation (4.19) as follows:

Ho (5 ,8) = 2[F¢(3,G‘) - F,(3.8)] (4.20)

22

Fried““ found F¢(3,3) to be given by:

L
FLG8) = 8.6 k8 (an )7 fav c2tv) [d3(D1-exp(i3.3)]
. (o]
0'1]/3[cos(3.3v) + COS(VOz/k)]} (4.21)

where: o is two dimensional spatial frequency:

Q
1]
a

6 = [6];
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ILLUSTRATION OF ANISOPLANATIC PHASE ERROR ! .

a. TWO TYPICAL POINTS IN THE APERTURE PLANE RECEIVING OPTICAL
SIGNALS FROM TWO TYPICAL ZENITH ANGLES

=1

- 2
o "””Zéz
RS
x P
1 —-—
) &

APERTURE PLANE

b. OPTICAL PHASE AS A FUNBII.DN OF LOCATION IN THE APERTURE
PLANE FOR ZENITH ANGLE i,

¢ ¢(X1,¢,)'¢(X,,¢,)
[ '3
X X, X,

c. OPTICAL PHASE AS A FUNCTION OF LOCATION IN THE APERTURE
PLANE FOR ZENITH ANGLE i,

¢(xw¢2)"¢(xz.'l’2) ;
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Figure 4-1
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v is the distance along the propagaticn path from receiver

i to transmitter, and;

(4.22)

1002[27r(4/3) sin(x/6)]" '~ 8.16

Equation (4.21) 1s valid for the inertfal sub-range as defined by
equation (4.5). Using equation (4.21) in equation (4.20) gives:

L .
H,G.8) = 8.16 kB(2e2)7 fav c2v) [ V3 1-exp35.3)]

[1-cos(a.8v)]} (4.23)

In Appendix A we reduce an integral similar to the integral

in equation (4.23). Following the procedure here that fs used in ;

Appendix B we find:
5/3

H¢(3,3) = 2.9] kz (secy) p5/3 J,ahcﬁ(b){] + (zh)
()

- (1/2) [1 + 2hz cosa + (zh)2]°/6
- (1/2) [ - 2hz cosa + (zh)%]%/6 (4.24) |
where: y is the zenith angle; ;
(4.25) *

z = (esecy)/o;

- h is the vertical distance (i.e., altitude) above the ground

transmitter, and;

a is the angle between p and 8.
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For propagation paths originating at the same point in the
aperture plane, (i.e., paths 1 and 2 in figure 4-1a) the first
few meters of the paths will be spaced closer than the inner scale.
For an angle of 50 urad the paths will be within 1 mm for 20 meters.
Since this is a very small portion of the total path, the results
should still be highly accurate. We note that for separations less
than the inner scale the structure function is known to be

5/3 assumption over

proportional to pz, thus the use of the o
estimates the strength of turbulences. At the top of the turbulent
atmosphere the separation between the paths has increased by yZ
where Z is the top of the turbulent atmosphere (~20km) and y is the
angle between propagation paths. It is believed that the outer
scale, Lo’ is on the order of 100 m at the top of the atmospherezs.

Thus:

vZ << 100 m (4.26)
Using Z = 20km in equation (4.26) gives:

y<< 5 mrad (4.27)

Thus the maximum separation in angle between any element of the

observed data set {gi(z)} where:
91(3) = Q(F.Wi) = ¢(;].¢i) - ¢(;Z.$i) (4.28)

and g(;.$+3), the quantity to be estimated, must be much less than

5 mrad.

Theil i
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Equation (4.24) is the basic result of this sectfon. It
determines the anisoplanatic error in terms of the propagation
path. In general, the integral must be evaluated using numerical
techniques for a particular Cﬁ(h) profile. We will evaluate

equation (4.24) in Chapter 5.
4.3 Reduction of the Anisoplanatic Error

We wish to reduce the anisoplanatic error given by H. We
pause briefly to recapitulate that our knowledge of the additive
phase noise is limited. What we know about the process is its
structure function, equation (4.6), its hyperstructure function,
equation (4.21), and its spatial-angular structure function,
equation (4.24). These equations are all developed based on the
assumption that the turbulence is kolmogorov. Thus, for these
equations to be valid the separation between the propagation paths
in figure 4-1 must be within the inertial sub-range as defined by
equation (4.5). While we don't know exactly what 10 and L0 are,
we do know that in the aperture plane 10 is on the order of a
millimeter and L0 is on the order of the height above ground23.
For our case of interest the minimum o in the aperture plane will
be the separation between actuators in the wavefront corrector.

24, which is approximately 0.1m.

This separation is on the order of o
The maximum separation in the aperture plane is determined by

the diameter of the transmitting aperture, therefore, the transmitting
aperture must be higher above ground than its diameter, which is

almost always the case.
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Finally, the last assumption that we must make is the so
called Taylor's hypothesis, also called the frozen flow theoryzs.
This theory assumes that in the time scales of interest the elements
of turbulence remain fixed in shape (i.e., "frozen"). Time
variations in the turbulence induced aberrations are assumed to be
caused by the wind transporting the "frozen" turbulence pattern

through the propagation path.

The ambient winds along a propagation path from ground to space
have varying speeds and directions as a function of altitude, thus
for a system with a fixed propagation path the turbulence pattern
would be moving in a random fashion and no prediction would be
possible. For a near earth satellite, however, the slew rate of
the line of sight (i.e., &) will cause the propagation path to cut
through the atmosphere, thus, producing a pseudo-wind. If the speed
of the pseudo-wind predominates over the natural winds at all
altitudes, then the turbulence pattern at each altitude will appear
to move at the same angular velocity. For a satellite at an altitude
of 200 km the slew rate of the line of sight is approximately 0.039

rad/sec near zenith. The tangential velocity at altitude h is thus:

v = (0.039) h m/sec (4.29)

In the lower altitudes, wind speeds are usually under 8 m/seczs.

Thus for h > 200 m the pseudo-wind will predominate over the ambient
winds. The maximum wind speed, approximately 100 m/sec, usually

26. At 12 km, the pseudo-wind speed is

occurs at about 12 km
468 m/sec, thus the pseudo-wind easily predominates at the higher
altitudes. Thus, there is a direct relationship between time and

the angle moved at each height of turbulence, for low earth orbiting




satellites. This allows us to translate an observation over a
certain time interval to an observation over a corresponding angle,
and thus, allows use of equation (4.21) in equation (3.23).
Therefore, the optimum l1inear estimate for the point ahead angle,

3, is given by:
9(6,y48) = 3:3 (4.30)
where: all angles are coplanar, and;

2 is determined by solving:
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and where: (w+e-w1) << 5 mrad, for all i (4.32)
according to equation (4.27).

Equations (4.30), (4.31), and (4.32) are the basic result of this
section. In the next chapter we will evaluate the anisoplanatic error
for a typical case and determine how much this error can be reduced
through utilization of the optimum estimate. In an operating adaptive
optical system the data necessary to determine the optimum estimate

(t.e., the F¢'s) would be available. For an analytical evaluation

! of the performance, we will calculate the F¢'s using a model turbulent

atmosphere.
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V. EVALUATION OF THE PERFORMANCE OF THE OPTIMUM ESTIMATOR

In this chapter we will obtain numerical results to determine
how well the optimum estimator performs. First we evaluate the error

without the estimate and then the error with the estimate.
5.1 Magnitude of the Anisoplanatic Error

The anisoplanatic error is given by equation (4.24). To evaluate
the integral a profile of turbulence, i.e., Cﬁ as a function of h,
must be selected. The most extensive measurements of the strength
of turbulence as a function of altitude have been made at the ARPA
Maui Optical Station. The model of Cﬁ versus h derived from those
measurements is shown in figure 5-L27. This model will be used to
evaluate the performance of the optimum estimator. Once we know what
to use for Cﬁ in equation (4.24) we can perform a numerical integration.
This numerical integration was accomplished using a computer program
adapted from Friedzg. Tabte 5-1 1lists the value of the integral, I],

as a function of the parameter z and the angle a.

For a typical case of p =1 m; ¢y = 0; a = 0; and a point ahead

angle, 6 = 50 urad; using table 5-1 and equation (4.24) we see that:
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VALUES OF INTEGRAL I](z,a)
ANGLE a
z 0.0 45.0 60.0 75.0
1.00e+00 5.798e-13 5.714e-13 5.672e-13 5.641e-13
7.94e-01 5.771e-13 5.681e-13 5.635e-13 5.602e-13
6.31e-01 5.742e-13 5.644e-13 5.59%6e-13 5.560e-13
5.01e-01 5.711e-13 5.605e-13 5.553e-13 5.514e-13
3.98e-01 5.677e-13 5.563e-13 5.506e-13 5.465e-13
3.16e-01 5.641e-13 5.518e-13 5.456e-13 5.411e-13
2.51e-01 5.602e-13 5.469%e-13 5.402e-13 5.354e-13
2.00e-01 5.559%e-13 5.416e-13 5.344e-13 5.291e-13
1.58e-01 5.513e-13 §.358e-13 5.281e-13 5.224e-13
1.26e-01 5.454e-13 5.297e-13 5.213e-13 5.152e-13
1.00e-01 5.4i1e-13 5.230e-13 5.140e-13 5.073e-13
7.94e-02 5.353e-13 5.158e-13 5.060e-13 4_989%-13
6.31e-02 5.291e-13 5,080e-13 4,975e-13 4 .898e-13
5.01e-02 5.223e-13 4.996e-13 4.882e-13 4.799%-13
3.98e-02 5.%1e-13 4,905e-13 4,782e-13 4.693e-13
3.16e-02 5.u72e-13 4 .807e-13 4.675e-13 4.578e-13
2.51e-02 4.988e-13 4.701e-13 4,558e-13 4.454e-13
2.00e-02 4 .896e-13 4.587e-13 4.433e-13 4_.320e-13
1.58e-02 4.797e-13 4.463e-13 4.,297e-13 4.176e-13
1.26e-02 4.690e-13 4.329e-13 4.150e-13 4.020e-13
1.00e-02 4.575e-13 4.185e-13 3.992e-13 3.853e-13
1 7.94e-03 4.450e-13 4.028e-13 3.822e-13 3.673e-13
~ 6.31e-03 4.314e-13 3.858e-13 3.638e-13 3.480e-13
5.01e-03 4.166e-13 3.673e-13 3.439e-13 3.273e-13
3.98e-03 4.005e-13 3.471e-13 3.227e-13 3.054e-13
3.16e-03 3.826e-13 3.250e-13 2.999¢e-13 2.824e-13
2.51e-03 3.625e-13 3.010e-13 2.758e-13 2.548e-13
2.00e-03 3.383e-13 2.753e-13 2.507e-13 2.33%e-13
1.58e-03 3.048e-13 2.485e-13 2.252e-13 2.092e-13
1.26e-03 2.730e-13 2.214e-13 1.997e-13 1.848e-13
1.00e-03 2.441e-13 1.948e-13 1.747e-13 1.612e-13
7.94e-04 2.171e-13 1.688e-13 1.507e-13 1.386e-13
6.31e-04 1.879%e-13 1.437e-13 1.280e-13 1.176e-13
5.01e~04 1.547e-13 1.200e-13 1.070e-13 9.830e-14
3.98e-04 1.258e-13 g.854e-14 8.809e-14 8.106e-14
3.16e-04 1.002e-13 7.970e-14 7.153e-14 6.598e-14
2.51e-04 7.901e-14 6.368e-14 5.73%-14 5.310e-14
1 2.00e-04 6.184e-14 5.038e-14 4 .558e-14 4.229%e-14
3 1.58e-04 4.819%-14 3.954e-14 3.588e-14 3.336e-14
. 1.26e-04 3.746e-14 3.081e-14 2.802e-14 2.609%e-14

|
|
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.00e-04
.94e-05
.31e-05
.01e-05
.98e-05
.16e-05
.51e-05
.00e-05
.58e-05
.26e-05
.00e-05
.94e-06
.31e-06
.0le-06
.98e-06
.16e-06
.51e-06
.00e-~06
.58e-06
.26e-06
.00e-06
.94e-07
.31e-07
.0le-07
. 98e-07
.16e-07
.51e-07
.00e-07
.58e-~07
.26e-07
.00e-07
.94e-08
.31e-08
.01e-08
.98e-08
.16e-08
.51e-08
.00e-08
.58e-08
.26e-08
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0.0

.904e-14
.235%e-14
.697e-14
.25%-14
.112e-15
.520e-15
.632e-15
.274e-15
.304e-15
.616e-15
.130e-15
.882e-16
.485e-16
.809%e-16
.641e-16
.828e-16
.264e-16
.725e-17
.016e-17
.145e-17
.853e-17
.962e-17
.348e-17
.256e-18
.352e-18
.356e-18
.986e-18
.046e-18
.401e-18
.597e-19
.563e-19
.490e-19
.070e-19
.099%-19
.435e-19
.803e-20
.697e-20
.574e-20
.123e-20
.133e-20

45.0

.383e-14
.827e-14
.385¢e-14
.038e-14
.673e-15
.607e-15
.057e-15
.912e-15
.076e-15
.472e-15
.039%-15
.310e-16
.125e-16
.582e-16
.498e-16
.738e-16
.207e-16
.365e-17
.789%e-17
.001e-17
.762e-17
.905e-17
.312e-17
.029e-18
.208e-18
.266e-18
.929%e-18
.010e-18
.378e-18
.448e-19
.473e-19
.433e-~19
.034%e-19
.076e-19
,420e-19
.712e-20
.640e-20
.538e-20
.101e-20
.118e-~20

NWPLOO~NWPELANANO=NONPLNO PN )BUITOD = = NW U =t NN NN ot d i N

60.0

2.16%-14
1.665e-14
1.265e-14
9.512e-15

7.072e-15 -

5.202e-15
3.791e-15
2.739%-15
1.966e-15
1.402e-15
9.947e-16
7.027e-16
4.945e-16
3.469%e-16
2.426e-16
1.6935e-16
1.178e-16
8.185e-17
5.676e-17
3.930e-17
2.717e-17
1.876e-17
1.294e-17
8.915e-18
6.137e-18
4.201e-18
2.900e-18
1.992e-18
1.367e-18
9,.376e-19
6.428e-19
4.404e-19
3.016e-19
2.065e-19
1.413e-19
9.667e-20
6.611e-20
4 520e-20
3.089%e-20
2.111e-20

TABLE 5-1 (CONTINUED):
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75.0

.023e-14
.555e-14
.184e-14
.922e-15
.658e-15
.920e-15
.603e-15
.616e-15
.886e-~15
.35Te-15
.622e-~16
.821e-16
.815e-16
.386e-~16
.374e-16
.660e-~16
.157e-16
.053e-17
.593e-17
.877e-17
.684e-17
.855e-17
.281e-17
.832e-18
.084e-18
.188e-18
.880e-18
.979%-18
.359%e-18
.324e-19
.395e-19
.383e-19
.003e-19
.057e-19
.408e-19
.634e-20
.590e-20
.507e-20
.081e-20
.106e-20




1.00e-08
7.94e-09
6.31e-09
5.01e-09
3.98e-09
3.16e-09
2.51e-09
2.00e-09
1.58e-09
1.26e-09
1.00e-09
7.94e-10
6.31e-10
5.01e-10
3.98e-10
3.16e-10
2.51e-10
2.00e-10
1.58e-10
1.26e-10
1.00e-10

Ned = NNWPERD = NNWPRN~—=NWE OO —

0.0

.456e-20
.936e-21
.781e-21
.6272-21
.157e-21
.154e-21
.469e-21
.002e-21
.834e-22
.661e-22
.178e-22
.167e-22
.478e-22
.007e-22
.56de-23
.682e-23
.191e-23
.175e-23
.483e-23
.011e-23
.889%e-24

45.0

.447e-20
.879%e-21
.745e-21
.604e-21
.143e-21
.145e-21
.463e-21
.984e-22
.811e-22
.646e~22
.169e-22
.161e-22
.478e-22
.005e-22
.853e-23
.673e-23
.186e-23
.172e-23
.481e-23
.009e-23
.880e-24

1
-9
6
4
3
2
1
9
6
4
3
2
1
1
6
4
3
2
1
]
6

TABLE 5-1 (CONTINUED)
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60.0

.442e-20
.851e-21
.727e-21
.593e-21
.135e-21
.140e-21
.461e-21
.966e-22
.800e-22
.639%e-22
.165e-22
.158e-22
.472e-22
.004e-22
.846e-23
.668e-23
.183e-23
.170e-23
.479%e-23
.009%e-23
.875e-24

75.0

.439%e-20
.830e-21
.714e-21
.585e-21
.130e-21
.137e-21
.458e-21
.953e-22
.792e-22
.634e-22
.161e-22
.156e-22
.471e-22
.003e-22
.841e-23
.665e-23
.181e-23
.16%e-23
.479%e-23
1.008e-23
6.875e-24

= NWPELRN = NWPLPRNRO~NWELENY—~




H,(1,50urad) = (3.664x10"'%) k2 rad? (5.1)

Using A = ,55x10"%m in equation (5.1) gives:

2

H¢(1,50urad) = 4,78 rad (5.2)

This is obviously a significant error. It corresponds to an rms error
of approximately .35\ which is about 3.5 times greater than the total
wavefront error typically budgeted for all error sources in an optical
system. It is this unacceptably large anisoplanatic phase error which
generates the requirement for the separation between the reference

beacon and the receiver.

5.2 Reduction of the AniSOplanatié Error Through Use of the Optimum

Linear Estimate

Before evaluating the error in the estimate we must stop to
realize that equations (4.30) and (4.31) only provide the optimum
estimate for the selected observed data set {91(3)}. The equations
do not tell us how to select the elements of the set. We will thus
evaluate the performance of the estimation procedure for different
numbers of elements in the set and for different angular spacings.

We will compare the error for each of the optimum estimates to select

which elements should be chosen for inclusion in {gi(z)}.

First we use equation (4.31) to find 3 for each {gi(z)}, then we

find the mean square error using:
<eb> = <[q(3.348) - (338N (5.3)
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Before we can solve equation (4.31) we must evaluate the F, 's.

In appendix A we show that: °
F,G.8) = (2.9172) ¥ 0™ 3(secy) (21, - 1] (5.4)
where: I] is the integral in equation (4.24); and
I, = f:ﬁ(h)dh (5.5)
)

To determine the performance of the estimation procedure as a

function of the look back angle, 8> where:

oL = nlvy - ) (5.6)
we choose n =2, p =1m, y =q= 0, and let:

0.05 < (eL/e) <1 (5.7)

for values of & between 5 and 50 zrad. In figure 5-2 we plot the
reduction in mean square error achieved by the estimate as a function
of the ratio of 8. to 6. From figure 5-2 we see that the performance

of the estimate is not a strong function of this ratio.

In figure 5-3 we plot the maximum reduction in mean square error,
for n = 2, for each point ahead angle of figure 5-2. The estimate is
seen to give reasonable performance (i.e., 20% improvement) for point
ahead angles less that 8 urad, while providing very marginal

performance for a point ahead angle of 50 urad.
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To determine how the performance of the estimate varies with n
we duplicate the calculations made for figure 5-2 except we let n = 3.
The results of these calculations are shown in figure 5-4. Comparing
figures 5-2 and 5-4 we see that little improvement is gained by
increasing the number of data points in the estimate from two to three;
The performance of the estimate for an n of four was calculated for
three cases. Also performance of a single point estimate, f.e., n =1
was calculated. The mean square error for all cases is given in
table 5-2. As can be seen from this table the single point estimate

provides no improvement.

Figure 5-5 shows the relationship between the reduction in mean
square error and the number of data points in the estimate. C(learly
there is no value in using an n of four, and only very slight gain

in performance in going from an n of two to an n of three.
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TABLE 5-2

MEAN SQUARE ERROR IN RAD? AT A = .55 wm

POINT AHEAD ANGLE IN uRAD

n 5 10 20 32 50
s ) 0.145 0.429 1.243 2.476 4.781
1 0.145 0.429 1;242 2.470 4.759
2 0.109 0.331 1.007 2.108 4.342
3 0.106 4,303
4 0.107 4.303
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VI CONCLUSIONS
6.1 Discussion of Results

The data in figure 5-5 shows clearly that there is little value
in using more than two data points in the estimate. We believe that
the basic reason for this is that the linear component of phase
distortion (i.e., wavefront tilt) is the major contributor to the
atmospherically induced wavefront aberrationszg. Therefore, the
major contributor to the anisoplanatic error is the difference in
the tilt of the two wavefronts arfiving from different angles. Thus,
once a good estimate is made of the linear portion of the anisoplanatic
error, 1ittle is gained by adding estimates of the higher order
aberrations. The data in figures 5-2 and 5-4 show that the performance
of the estimate is not a strong function of the look back angle. We
believe that this is also a result of the fact the phase aberrations
are mostly linear, and that a good estimate of this component can
be made over a wide range of look back angles. One would also expect
that the estimate wou1d'provide better results for small point ahead
angles, as shown in figure 5-3, since for smail angles there is better
correlation between the measured data and the desired data than there
is for larger angles. We believe that the magnitude of the improvement

shown in figure 5-2 is significant as discussed in the next section.




6.2 System Implications

To establish a reasonable station keeping specification we
can interpret the point ahead angle in figure 5-2 to be the station
keeping error allowable between the beacon and the desired receiver.
From table 5-2 we see that the mean square wavefront error for a
station keeping error of a 5 urad is .145 radz, at a wavelength
of .5 um. This corresponds to an rms wavefront error of .06x, which
is a reasonable budget for the station keeping error, since an
optical system with a .1x rms wavefront error is considered a good
system. Through Qti]ization of the estimation process developed in
this paper the allowable station keeping error can be increased by
approximately 15% while maintaining the same wavefront error.
Although this increase seems small, it is truly significant since it
could extend the lifetime of a system costing 100‘'s of millions of
dollars, for a very nominal investment in signal processing electronics.
Alternatively the weight of the propellant required to maintain the
station keeping could be reduced by 15%. Since almost all space
systems have difficulty meeting the design goals for system weight,
use of the developed estimation procedure could make the difference
between whether or not the desired system weight goals are met.
Different systems may require varying station keeping requirements.

In general, the more stringent the station keeping specification, the

more the benefit from the estimation procedure developed herein.




It is important to point out that the data needed to obtain this
optimum linear estimate, i.e., the F¢'s in equation (4.31), are already
& available in current adaptive optical systems. No a priori knowledge

of the turbulence profile, or any other atmospheric charcteristics,

oy

is required.
6.3 Recommendations for Future Work

It is hoped that the results of this work will stimulate others
to investigate the anisoplanatic problem. The use of techniques
developed for acoustic imaging30 could possibly be applied to the
anisoplanatic problem. We also believe that the developed estimation

procedures could be usefully applied to many real world problems where

the correlation function is not well behaved.




APPENDIX A
SIMPLIFICATION OF THE HYPERSTRUCTURE FUNCTION

To solve equation (4.31) we need to evaluate F;(3,3)

and F¢(3,0). As noted in section 2.3:

F¢(3,0) = 0,(p) (A.1)

Since Kolmogorov turbulence is assumed we can use equation (4.6)
to determine D¢(p). The simplification of F¢(3.3) is not as straight
forward.

From equation (4.21) we have:

L
F,(5.5) = 8.16 K2 (4x2)") fdv C'Z'(v) I(v) (A.2)
[+]

where:

() = f& o3¢ [1-exp(i3. 7)1 [cos (3. Bv)+cos(vaZ/k)]}  (A.3)
Using:

cos x = [exp(ix) + exp(-ix)]/2
in equation (A.3) gives:

1) = [& o V3/2)epl1 G281 + 1/2)expl-1G-3v)] (A.8)

- (1/2)exp[iG. (34v)] - (1/2)exp[i5- (3 - Bv)]

+ [1 - exp(i2.p)] cos[(Voz)/Z]} (A.5)
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Usingzzz

jdi? f (o) exp(igep) = 2x /do o f (o) 3,(op) ' (A.6)
[}

where: Jo is the well known Bessel function of the first kind, of

order zero;
in equation (A.5) gives:
I(v) = 2x fda o 83(172) Jolosv) + (172)9 (-cev)
)
- (172) 3 (os48v]) - (1/72) 3 (olo-8v])

+ [1 - 3, (op)] [cos(vo? /k)]3 (A.7)

Using the law of cosines we get:

3 +Bv| = [o? - 208v cosa + (8v)%] (A.8)
where: a is the angle between 3 and §
Using equation (A.8) in equation (A.7) gives:

I(v) = 2% ./i; 0'8/3{J°(aev) - (1/2)J°[o(p2 - 2p6v cosa + 62v2)1/2]

2 1/2]

[«]
.-(1/2)‘](’[0:1(;:,2 + 2p8v coSa + sz
+[1 - Jo(ep)][cos(vozlk)]} (A.9)

Adding and substracting 1 in equation (A.9) to the quantity in curly

brackets and using18:

ft'"n - 3, (£)]dt = (r[(u=1)/2]Hr] (3-u)/2]}
[+
(2YHr[(wa )22 (A.10)

allows us to evaluate the first three terms of the integral.
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We get:

1(v) =20(-[r(5/6)11r(1/6)1(2"8/3)[r (11/6)172 [(ev)®/3

- (172) (p -2p6v coSa + e2 2)5’6

- (1/2) (o2+208v cosa + 6%v%)%/6)

+ ﬁa o301 - 3 (00)] cos[(vol/k)])

o

Usinglsz

x[F(x)] = r(x+1)
in equation (A.11) gives:

1(v) = 2s((-6/5) (2°%3) [r(1/6)11r(11/6)17" [(ev)®/3

- (1/2) (p2-208vcosa + 82y2)3/6

- (172) (p +2pevcosa + ezvz)SIG]

+I°}
where:
I° = ./ao 0-8/3[1 - Jo(cp)]cos[(vaz)/k]
° .
Using equations (4.8) and (A.13) in equation (A.2) gives:

L
F,G.8) = (-2.91/2) k2 o[dv cﬁ(v){(av)sl3

- (1/2) [p2-208v(cosa) + (ov)%1°/8

- (172) [p +2p0V(C0$a) + (ev) ]5/5

L
+ (81672002 fav c2(v)1-
0
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Letting 8 = O and using equation (A.1) in equation (A.15) gives:
L L
. 5/3,2 2 2 20011-
(o) = (2.9172)0° 3% fdvcn(v) + (8.16/2x)k fdvcn(v)l (A.16)
o o
Using equation (4.8) in equation (A.16) gives:
L L _
(8.16/21) [ av 21+ = (2.91/72) 4%/ afdv c2(v) (A.17)
é
Using equation (A.17) in equation (A.15) gives:

L
F,G.8) = 29120 fav 2nte®? - (lov)®? |
]

- (172) [o2-200v(cosa) + (8v)?)>/6

- (1/2) [o%+208v(cosa) +Tov)?]7/6) (a.18)
Letting: v = h secy; and (A.19)
z = (8secy)/p; where (A.20)

¥ = zenith angle
in equation (A.18) gives:
F,G.8) = (2.91/2)0% 3[sec()] 2
(2 f-[cﬁ(h) dh] - 1,(z,0)} . (A.21)
o

where:

I(z,a) = fanc2(m)1 +(zn)®/3 - (172) [1-22h(cosa)
o
+ (zh)

2]5/6 - (1/2) [1+2zh{cosa) + (zh)Z]SIG) (A.22)

67




Equation (A.21) is the desired end result of this appendix.
In general, equation (A.21) must be evaluated numerically for a
specific turbulence profile of interest. Values for I], for a

specific profile are given in table 5-1.
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